ОСОБЕННОСТИ РАБОТЫ И РАСЧЕТА БАЛОЧНЫХ ЭЛЕМЕНТОВ ИЗ БЕТОНА С КОМПОЗИТНОЙ АРМАТУРОЙ

А. М. Кокарев А. А. Емельянов

Астраханский государственный архитектурно-строительный университет

В последнее время стала все шире применяться для армирования бетонных конструкций неметаллическая композитная арматура (НКА). Положительные характеристики этой арматуры — высокая прочность, малый, по сравнению со стальной арматурой, объемный вес, высокая коррозийная стойкость, а также устойчивость к агрессивным средам и непроводимость электрического тока (диэлектрик).

Расчетные параметры балок установлены на основе обмеров, прочность бетона определена на основе испытаний образцов, изготовленных совместно с балками, прочность арматуры принята по соответствующим нормативным документам.

Таблица 1 Характеристики бетонной балки с композитной арматурой

Пролет L	1124 мм
L/2	562 мм
Ширина, b	77,5 мм
Высота, h	120 мм
Рабочая высота h ₀	96 мм
Диаметр арматуры, d	12 мм

Таблица 2 Характеристика бетонной балки с металлической арматурой

Пролет L	1130 мм
L/2	565 мм
Ширина, b	76 мм
Высота, h	118 мм
Рабочая высота h ₀	93 мм
Диаметр арматуры, d	12 мм

Схема испытаний принималась в виде простой балки на двух шарнирных опорах с нагружением в середине пролета сосредоточенной силой. Нагрузка создавалась гидродомкратом, усилие определялось образцовым динамометром 3-го класса с допускаемым усилием 5 тн. Во время испытаний измерялись перемещения балки в трех точках на опорах и в середине пролета с помощью прогибомеров ПАО-6 с ценой деления 0,01 мм (рис. 1).

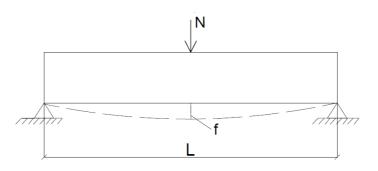


Рис. 1. Эскиз балки с учетом прогиба

Таблица 3 1-е испытание. Балка БП12

$\mathcal{N}\!$	N деления	N кг	N κH	Пр. 1	Пр. 2		Прогиб мм	Пр.3	<i>Мисп</i> к <i>Н</i> *м	<i>Мисп</i> кг*м
1	0	0	0	565	319	0	0	503	0	0
2	15,4	100	1	565	331	0,12	0,12	503	0,281	28,1
3	30,8	200	2	565	422	0,91	1,03	503	0,562	56,2
4	46,2	300	3	565	520	0,98	2,01	503	0,843	84,3
5	61,6	400	4	565	657	1,37	3,38	503	1,124	112,4
6	77	500	5	565	767	1,1	4,48	503	1,405	140,5
7	92,4	600	6	565	929	1,62	6,1	503	1,686	168,6
8	107,8	700	7	565	1075	1,46	7,56	503	1,967	196,7
9	123,2	800	8	565	1256	1,81	9,37	503	2,248	224,8
10	138,6	900	9	565	1423	1,67	11,04	503	2,529	252,9
11	146,3	950	9,5	565	1500	0,77	11,81	503	2,6695	266,95
12	154	1000	10	565	1657	1,57	13,38	503	2,81	281

Таблица 4 2-е испытание. Балка БМ12

$N_{\underline{o}}$	N деле-	N, кг	Ν, κΗ	Пр 1	Π_{n} 2	Прогиб,	Пр 3		Mucn,
J v ⊴	ния	1V, KZ	IV, KII	11p 1	Пр 2	мм	11p 3		кН*м
1	0	0	0	384	2644	0	858		0
2	7,7	50	0,5	384	2645	0,01	858		0,14125
3	15,4	100	1	384	2646	0,02	858		0,2825
4	23,1	150	1,5	384	2651	0,07	858		0,42375
5	30,08	200	2	384	2669	0,25	858		0,565
6	38,5	250	2,5	384	2731	0,87	858		0,70625
7	46,2	300	3	384	2849	2,05	858		0,8475
8	53,9	350	3,5	384	2899	2,545	859		0,98875
9	61,6	400	4	385	2925	2,8	859		1,13
10	69,3	450	4,5	385	2928	2,675	890	трещина	1,27125
11	84,7	550	5,5	385	2991	3,305	890		1,55375
12	100,1	650	6,5	386	3007	3,455	891		1,83625
13	115,5	750	7,5	386	3059	3,975	891		2,11875
14	130,9	850	8,5	465	3147	4,46	891		2,40125
15	146,3	950	9,5	465	3178	4,77	891		2,68375
16	161,7	1050	10,5	465	3242	5,41	891	_	2,96625

17	177,1	1150	11,5	470	3258	5,54	892		3,24875
18	192,5	1250	12,5	470	3333	6,29	892		3,53125
19	207,9	1350	13,5	472	3339	6,34	892		3,81375
20	223,3	1450	14,5	472	3438	7,33	892		4,09625
21	238,7	1550	15,5	476	3510	8,03	892		4,37875
22	254,1	1650	16,5	477	3571	8,635	892		4,66125
23	269,5	1750	17,5	477	3755	10,47	893		4,94375
24	284,9	1850	18,5					разрушение	5,22625

Таблица 5 Результаты сопоставления экспериментальных и расчетных значений разрушающих изгибающих моментов.

Марка	Nu кг	М эксп кН*м	Nb H	Ns κH	Мb кН*м	Ms кН*м	Rs МПа	Rb МПа
БП12	1000	2,81	35132,09	90,48	2,81718	7,255432	800	14,33
БМ12	1850	5,22625	51571,09	41,2815	3,575501	2,862108	365	14,33

Формулы, использованные в расчете:

$$f = f_2 - \frac{f_1 + f_2}{2} \tag{1}$$

ные в расчете:
$$f = f_2 - \frac{f_1 + f_2}{2} \qquad (1)$$

$$M_q = \frac{N}{2} * \frac{L}{2} \qquad (2)$$

$$N_b = R_b * bx_R \qquad (3)$$

$$N_s = R_s * A_s \qquad (4)$$

$$x = \zeta_R * h_0 \qquad (5)$$

$$M_u = z * N_b \qquad (6)$$

$$M_u = z * N_s \qquad (7)$$
ний построены графики зависимости прогиба

$$N_b = R_b * bx_R \tag{3}$$

$$N_s = R_s * A_s \tag{4}$$

$$\begin{aligned}
x &= \zeta_R * h_0 \\
M_u &= z * N_b
\end{aligned} \tag{5}$$

$$M_u = z * N_s \tag{7}$$

По результатам испытаний построены графики зависимости прогиба от силы.

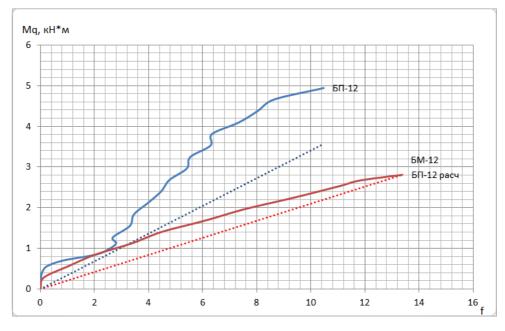


Рис. 2. Результаты испытаний балок

Оценивая результаты испытаний можно отметить, что деформативность балок армированных стальной арматурой меньше чем у балок, армированных НКА, развитии прогибов балок, изготовленных из тяжелого бетона и с металлической и НКА, прослеживается явно нелинейная работа тяжелого бетона.

Список литературы

- 1. СТО ТОО 620200399412-01-2012. Стандарт организации «Арматура неметаллическая композитная для армирования бетонных конструкций». Астана. 2012. 32 с.
- 2. Ерышев В. А. Метод расчета деформаций железобетонных стержневых и плитных конструкций при повторных, знакопеременных и других видах сложного нагружения: дис. . . . д-ра тех. наук. М. : НИИЖБ Госстроя СССР, 1997. 353 с.
- 3. Кокарев А. М. Деформация железобетонных элементов с трещинами при повторных и знакопеременных нагружениях и разгрузках : автореф. дис. ... канд. тех. наук. М. : НИИЖБ Госстроя СССР, 1983. 22 с.
- 4. Карпенко Н. И., Ерышев В. А., Мухамедиев Т. А. Исследование деформации ж/б балочных элементов при знакопеременных нагрузках // Исследование ж/б конструкций при статических, повторных и динамических воздействиях. М.: НИИЖБ Госстроя СССР, 1984. С. 56–72.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРОЧНОСТИ БЕТОНА НА ВЕЛИЧИНУ КОЭФФИЦИЕНТА АРМИРОВАНИЯ, ВЫЗЫВАЮЩЕГО ОБРАЗОВАНИЕ УСАДОЧНЫХ ТРЕЩИН

А. М. Кокарев, Д. А. Батаев, А. А. Емельянов Астраханский государственный архитектурно-строительный университет

В железобетонных элементах арматура, до достижения в бетоне предельных деформаций, работает, как правило, упруго. Нелинейность в работе железобетонных элементов проявляется в основном за счет нелинейной работы бетона.

Нелинейность деформирования бетона вызывает перераспределение напряжений в железобетонных элементах, которое можно определить, зная деформативные характеристики бетона и арматуры.

При усадке бетона в железобетонном элементе в бетоне и арматуре до приложения внешних нагрузок наводятся начальные или усадочные напряжения. Вопросы влияния усадки бетона рассматривались в работах [1, 2], обосновавших необходимость учета влияния усадки бетона при проектировании железобетонных конструкций зависимости от содержания, арматуры.В бетоне могут создаваться значительные растягивающие напряжения, что может приводить к снижению трещиностойкости элемента или появлению трещин в бетоне.

Напряжения в бетоне от усадки определяются, исходя из упругой работы арматуры и условия равновесия сил в арматуре и бетоне железобетонного элемента $N_{he} = N_s$.