Вывод: выполнив расчеты, определили, что при увеличении класса бетона, уменьшается предельный коэффициент армирования. Следовательно, для сохранения величины усилия, которое может воспринимать арматура и не образовывались усадочные трещины необходимо принимать для армирования арматуру более высокого класса

## Список литературы

- 1. Цилосани 3. Н. Усадка и ползучесть бетона. Тбилиси: Мецниереба, 1979. 231 с.
- 2. Кокарев С. А. Влияние усадки на деформации железобетонных стержневых элементов при малоцикловых нагружениях // Инженерно-строительный вестник Прикаспия : научно-технический журнал. Астрахань, 2015. № 1 (11). С. 36—40.

## ИССЛЕДОВАНИЕ СЕРОБЕТОННОЙ БАЛКИ С МЕТАЛЛИЧЕСКОЙ И КОМПОЗИТНОЙ АРМАТУРОЙ ПРИ РАБОТЕ НА ИЗГИБ

А. М. Кокарев, В. В. Куликов, А. С. Луцев

Астраханский государственный архитектурно-строительный университет

Серобетон – это тяжелый конструкционный бетон, в состав которого входит серное вяжущее, инертные крупные и мелкие заполнители и наполнители. В настоящее время серобетон может весьма широко использоваться в строительстве, так как может считаться более универсальным современным материалом по сравнению с обычными бетонами. Прочность сцепления арматуры с серобетоном такая же, как при сцеплении у бетона на портландцементе. Кроме того, конструкции из серобетона могут армироваться как стеклопластиковой, так и металлической арматурой.

Серобетон обладает рядом положительных технологических и эксплуатационных характеристик:

- быстрый набор прочности;
- высокая прочность;
- высокая коррозийная стойкость;
- низкое водопоглощение;
- низкая водонепроницаемость;
- высокая морозостойкость;
- изделия из серобетона целиком подлежат рециклингу неограниченное количество раз без потери качества;
  - отвердение на морозе или в воде;
  - термопластичность;
  - низкий естественный радиоактивный фон;
- защитные свойства от электромагнитного и радиоактивного излучений;
  - высокие стабильные теплотехнические показатели;
  - высокая химическая стойкость к маслам, растворам солей и кислот.

Для определениявида арматуры, наилучшим образом работающей в серобетоне, в лаборатории АГАСУ было проведено испытание балок изготовленных из серобетона, армированных стальной (балка СМ12) и стеклопластиковой арматурой (балка СП12) на изгиб.

Цель работы: исследовать особенности деформирования и разрушения балок из серобетона, армированных стальной и композитной арматурой, сравнить их механические характеристики и выяснить, какая из исследуемых балок лучше проявляет себя под нагрузкой.

Балки имели следующие размеры: пролет 1134 мм, ширина сечения 78 мм, высота сечения 118 мм. Диаметр металлической и стеклопластиковой арматуры 12 мм. Расчетная схема представляла собой балку, свободно лежащую на двух опорах и загружаемую сосредоточенной силой в середине пролета (рис. 1).

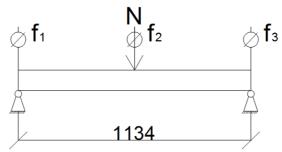



Рис. 1. Схема испытания балок

Нагрузка увеличивалась равными долями. На каждом этапе нагружения снимались показания приборов. Приборы — прогибомеры ПАО-6 с ценой деления 0,01 мм, измеряли вертикальные перемещения балки в трех точках. По результатам измерений вычислялся прогиб балки.

По данным, полученным в ходе испытаний, построены графики зависимости прогиба от момента «M-f» (рис. 2).

Из графиков видно, до образования трещин прогиб балок практически не появлялся. Появление трещины произошло у балки СП-12 при моменте составляющем 50 % от предельного, у балки СМ-12 при моменте численно совпадающем с моментом балки СП-12 и составляющем порядка 27 % разрушающего, что значительно больше чем у балок из обычного бетона на портландцементе. После появления первой трещины прогиб возрастал скачкообразно после нескольких этапов увеличения нагрузки. Причем у балки, армированной стеклопластиковой арматурой он возрастал быстрее. При достижении прогиба 6 мм балка СМ-12 разрушилась по растянутой арматуре при усилии, вдвое превышающем усилие балки СП-12.

В ходе проведения опыта были проведены расчеты. Данные представлены в таблице 1.

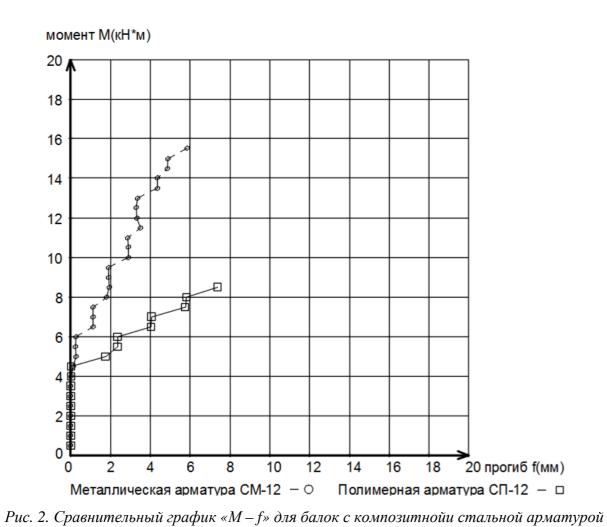



Таблица 1
Основные характеристики металлической и стеклопластиковой арматуры

| Марка балки | Ед. изм. | СП-12   | CM-12  |
|-------------|----------|---------|--------|
| М опыт      | кН*м     | 2,458   | 4,536  |
| b           | MM       | 78      | 78     |
| h0          | MM       | 95      | 95     |
| Rb          | МПа      | 27,43   | 27,43  |
| Eb          | МПа      | 21390   | 21390  |
| Rs          | МПа      | 800     | 365    |
| As          | мм2      | 113,1   | 113,1  |
| Es          | МПа      | 50000   | 200000 |
| ξR          |          | 0,059   | 0,328  |
| Nb          | кН       | 11,958  | 66,723 |
| Ns          | кН       | 90,480  | 41,282 |
| Mb          | кН*м     | 1,103   | 5,298  |
| Ms          | кН*м     | 8,343   | 3,278  |
| Ms          | %        | 239,412 | 27,733 |
| Mb          | %        | 55,144  | 16,806 |

Где: М – момент приводящий к разрушению по бетону, полученный опытным путем; b – ширина балки;  $h_0$  – высота рабочей зоны балки;  $R_b$  – расчетная прочность серобетона на сжатие;  $E_b$  – модуль упругости серобетона;  $R_s$  – расчетная прочность арматуры на растяжение;  $A_s$  – площадь поперечного сечения продольной арматуры;  $E_s$  – модуль упругости арматуры;  $\xi_R$  – граничная относительная высота сжатой зоны;  $N_b$  – продольная сила, возникающая в бетоне;  $N_s$  – продольная сила, возникающая в арматуре;  $M_b$  – расчетный момент, выдерживаемый бетоном;  $M_s$  – расчетный момент, выдерживаемый бетоном;  $M_s$  – расчетный момент, выдерживаемый арматурой.

По данным таблицы 1 видно, что момент, выдерживаемый до разрушения балки со стальной арматурой почти в два раза больше, чем с композитной арматурой, при условии, что ширина балки, высота ее рабочей зоны, прочность и модуль упругости серобетона одинаковы. Модуль упругости композитной арматуры в 4 раза меньше, чем стальной, что свидетельствует о больших прогибах при меньшей нагрузке у балки СП-12, чем у балки СМ-12. Это позволяет выдерживать большую нагрузку балкеСМ-12.

Момент, возникающий в балке по бетону, почти в 5 раз меньше при использовании композитной арматуры, при этом по арматуре возникает момент более чем в 2 раза больший, чем при использовании стальной арматуры. Из этого следует, что при использовании арматуры из композитных материалов момент, возникающий в балке, перераспределяется именно на нее, а при стальной арматуре большая часть усилий распределяется на серобетон.

Выводы: стеклопластиковая арматура, хоть и имеет ряд преимуществ по сравнению с металлической, но не может быть ее заменой в ответственных, несущих большепролетных конструкциях, так как не обладает необходимой жесткостью, достаточной для обеспечения эксплуатационных показателей. В виду большей деформативности стеклопластиковой арматуры эффективность ее использования в изгибаемых элементах составляет не более 25 %.

## Список литературы

- 1. СП 63.13330.2012. Бетонные и железобетонные конструкции. М. : Стройиздат, 2012.
- 2. Байков В. Н., Сигалов З. Е. Железобетонные конструкции. Общий курс. М. : Стройиздат, 2008.
- 3. Карпенко Н. И. Общие модели механики железобетона. М.: Стройиздат, 1996. 416 с.: ил.
- 4. Ерышев В. А. Методика расчета деформации бетона при режимных нагружениях : монография. Тольятти : Изд-во ТГУ, 2014. 131 с.: пер.
- 5. Кокарев А. М. Деформация железобетонных элементов с трещинами при повторных и знакопеременных нагружениях и разгрузках : автореф. дис. ... канд. тех. наук. М. : НИИЖБ Госстроя СССР, 1983. 22 с.