ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ПРИ ИССЛЕДОВАНИИ СТРУКТУРЫ И КОЛЕБАТЕЛЬНЫХ СПЕКТРОВ ГИДРОКСИЗАМЕЩЕННЫХ ЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ

М. Д. Элькин, Е. А. Джалмухамбетова, О. Н. Гречухина Астраханский государственный университет, г. Астрахань (Россия)

Колебательная динамика молекул проявляется в ИК области, поэтому ИК и КР спектры наиболее часто используются для получения информации о структуре молекул, и их конформационных свойствах. Наряду с расширением области практического применения спектроскопии, получили также существенное развитие теоретические методы исследования молекулярной колебательной динамики. Но возможность прогнозирования геометрического строения молекул и их свойств появилась только с развитием квантовой теории. Моделирование колебательных состояний гидроксизамещенных (ОН) шестичленных циклических соединений рассмотрим на примере гидроксифенолов, поскольку интерпретация их колебательных состояний широко представлена в периодической литературе и не подвергается сомнению, она основана на решении обратных задач [2, 4–5]. Квантовомеханические расчеты фундаментальных колебаний замещенных бензола, представленные в монографии [1], подтверждают правильность предложенного в работах [2, 4–5] отнесения.

Рис. 1. Молекулярные модели фенола (1), парагидроксифенола (2, 3), ортогидроксифенола(4, 5), метагидроксифенола (6–8).

Для гидроксизамещенных шестичленных циклических соединений принято считать [2, 6], что гидроксильная группа лежит в плоскости кольца, хотя из соображений симметрии для моногидроксибензола (фенола) плоскости бензольного кольца и фрагмента СОН должны быть ортогональны друг к другу. Для дигидроксизамещенных бензола (орто-, мета- и пара-) возможно наличие изомеров, связанных с взаимным расположением гидроксильных фрагментов как относительно плоскости шестичленного кольца, так и относительного друг друга (рис. 1).

Целью данной работы является моделирование колебательных состояний и анализ конформационных свойств моно- и дигидроксизамещенных фенола, основанный на расчетах параметров адиабатического потенциала в рамках гибридного метода функционала плотности DFT/B3LYP.

Модель молекулярных колебаний. Для описания молекулярных колебаний будем исходить из модельного гамильтониана вида:

$$2H^{(v)} = v_s (P_s^2 + (Q^s)^2) + \mu^{1/4} P_\alpha \mu^{-1/2} P_\beta \mu^{1/4} + \frac{1}{3} F_{srt} Q^s Q^r Q^t + \frac{1}{12} F_{srtu} Q^s Q^r Q^t Q^u .$$
(1)

 $P_{\alpha} = L(\alpha, sr)Q^{s}P_{r}$; $L(\alpha, sr)$ – постоянные Кориолиса, v_{s} – частоты гармонических колебаний (в см⁻¹); Q^{s} – безразмерные нормальные колебательные координаты, линейно связанные с декартовыми смещениями атомов; *F_{srt}* и *F_{srtu}* – кубические и квартичные силовые постоянные (параметры разложения адиабатического потенциала молекулы).

Уравнение (1) можно решить методами теории возмущения. Энергии колебательных состояний определяются следующим соотношением:

$$E^{V} = v_{s} (V_{s} + 1/2) + \chi_{sr} (V_{s} + 1/2) (V_{r} + 1/2).$$
⁽²⁾

Здесь V_s – квантовые числа рассматриваемого колебательного состояния, χ_{sr} – ангармонические постоянные, определяющие сдвиг фундаментальных полос колебаний.

Анализ гармонических и ангармонических параметров адиабатического потенциала (квадратичных, кубических и квартичных силовых постоянных) исследуемых замещенных фенола осуществлялся в 12 различных базисах: от 6-31G* до 6-311++G**.

Модельные расчеты проводились для различного положения плоскостей гидроксильного фрагмента относительно плоскости шестичленного кольца. Положительные значения частоты крутильного колебания гидроксильного фрагмента (χ_{CCOH}) достигается лишь для плоской конфигурации соединения. Этот факт исключает возможность свободного вращения фрагмента ОН относительно оси СО и дает основание предполагать наличие двух локальных минимумов для соответствующего сечения адиабатического потенциала, разделенных высоким потенциальным барьером.

В случае неплоской исходной конформационной модели фенола, плоскость симметрии молекулы перпендикулярна плоскости бензольного кольца ($\chi_{\rm CCOH} = 90^{\circ}$), квантовый расчет квадратичных параметров адиабатического потенциала фундаментальных колебаний фиксирует значение ниже ~ 350 см⁻¹. Все остальные исходные неплоские конфигурации фенола в результате оптимизации геометрии приводятся к плоской конформации соединения.

Выбор базиса расчета несущественно отражается на величинах рассчитанных частот колебаний моно- и дигидроксизамещенных бензола в гармоническом приближении. Исключение составляет значение частоты валентного колебания связи ОН. Различие достигает величины ~80 см⁻¹. Для сводных молекул такое различие не сказывается на интерпретации высокочастотной области колебательного спектра, но предпочтительнее базисы 6-311G** и 6-311++G**.

Для оценки ангармонического смещения частот фундаментальных колебаний воспользуемся формулами (3) и (4) для ангармонических постоянных. При этом необходимо учитывать тот факт, что численные методы, заложенные в технологии «Gaussian» [3] зачастую неработоспособны в низкочастотном диапазоне. Особенно это касается многоминимумной потенциальной поверхности или отдельного сечения этой поверхности, что и имеет место для крутильных колебаний гидроксильного фрагмента.

Таблица 1

Форма	$\mathcal{V}_{\mathcal{KC}}$	$V_{\mathcal{C}}$	$\mathcal{V}_{\mathcal{M}}$	V _{анг}	ИК	КР
q _{OH}	3615	3834	3639	3636	54,1	106
β, β _{OH}		1371	1330	1338	35,1	0,32
Q _{co} , β		1289	1251	1260	78,5	7,97
β_{OH}, β, Q		1200	1165	1175	138	4,97
βco		406	397	405	9,95	0,39
ρ _{co} , χ		516	504	511	13,3	0,10
χон		342	335	-	111	2,77

Интерпретация колебательного спектра фенола

Таким образом, оценка ангармонического смещения частот для гидроксизамещенных бензола в рамках метода DFT/B3LYP корректно может быть осуществлена лишь для высокочастотной области спектра, к примеру, для валентных колебаний связей ОН. Действительно, основной вклад в ангармоническое смещение частот вносят диагональные ангармонические постоянные (χ_{ss}). Согласно соотношению (3) за это ответственны первые два слагаемые. Третье слагаемое равно нулю ($F_{ssr} = 0$), если индекс *r* относится к неплоским (антисимметричным) колебаниям, что имеет место для крутильного колебания гидроксильного фрагмента.

Таблица 2

Форца	Моде.	ль симмет	puu C_{2h}	Модель симметрии С _{2v}				
Форми	v_{e}	$\mathcal{V}_{\mathcal{M}}$	ИК/КР	v_{ϵ}	$\mathcal{V}_{\mathcal{M}}$	ИК	КР	
q _{OH}	3839	3644	210	3839	3644	42,6	151	
q _{OH}	3838	3643	110	3838	3643	63,7	57,3	
Q, β_{OH}	1362	1321	59,1	1363	1322	10,1	2,63	
β, β _{OH}	1361	1320	1,27	1357	1316	102	0,56	
Q _{co}	1295	1257	18.2	1296	1258	0,02	18,5	
Q _{co} , γ, β	1270	1233	165	1271	1233	123	0,27	
β _{OH} , β	1205	1170	9,75	1201	1167	325	3,66	
β _{OH} , Q, β	1188	1154	282	1186	1152	9,40	4,09	
β _{CO}	449	438	0,45	448	438	22,3	0,18	
βco	343	335	17,4	342	335	0,01	0,40	
χ, ρεο	705	688	0,37	705	687	0,00	0,35	
ρςο, χ	520	508	23,5	519	507	23,6	0,00	
ρсο	370	362	1,99	369	361	0,00	2,10	
χон	300	293	221	298	292	219	1,67	
γон	296	290	5.53	294	288	0.00	3.71	

Интерпретация колебательных состояний парагидроксифенола

Влияние недиагональной ангармонической постоянной определяется величиной квартичной силовой постоянной F_{ssrr} . Остальные слагаемые малы. Если учитывать критерии применимости теории возмущения, то квартичные постоянные не должны превышать значения квадратичных (гармонических) параметров адиабатического потенциала.

Таблица 3

Форца	M	одель сим	іметрии	C_s	Модель симметрии С _{2v}				
Форма	v_{r}	$\mathcal{V}_{\mathcal{M}}$	ИК	KP	$v_{\mathcal{E}}$	$\mathcal{V}_{\mathcal{M}}$	ИК	KP	
q _{OH}	3850	3655	73,7	106	3835	3640	13,7	171	
q _{OH}	3789	3598	93,9	62,4	3834	3639	101	42,6	
Q, β , β_{OH}	1401	1358	36,1	2,37	1379	1337	69,7	7,32	
β, β _{OH}	1363	1322	66,1	1,61	1370	1328	11,8	1,16	
Q_{CO}, Q, β	1299	1261	177	7,07	1308	1270	134	7,55	
Q_{CO}, β	1274	1236	81,9	1,86	1286	1248	24,2	3,32	
β _{OH} , Q	1212	1177	44.1	4,25	1200	1165	314	0,45	
β _{OH} , β	1170	1137	95,1	3,52	1186	1152	14,4	3,45	
$\beta_{\rm CO}$	448	438	7,77	0,76	454	443	4,06	1,29	
$\beta_{\rm CO}$	310	304	5,02	0,27	311	305	12,2	0,63	
χ, ρ _{со}	708	691	0,04	0,01	709	691	0,00	0,00	
ρςο, χ	459	449	4,14	1,04	462	452	1,70	0,28	
χон	429	419	72,7	1,10	344	336	174	1,45	
χон	209	204	126	0,92	321	314	0,00	4,68	

Интерпретация колебательного спектра ортогидроксифенола

Для подтверждения достоверности проведенного анализа ангармонического смещения полосы, интерпретируемой как валентное колебание связи ОН, сравним силовые постоянные, рассчитанные в различных базисах. Кубическая (F_{sss}) и квартичная (F_{ssss}) силовые постоянные укладывается, соответственно, в интервал 2590 – 2610 см⁻¹ и 1505–1580 см⁻¹. Что говорит о характеристичности ангармонических силовых постоянных для валентного, колебания связи ОН в свободных молекулах (газы, пары, замороженные матрицы) гидроксизамещенных бензола.

Таблица 4

Форца	Модель сим. Cs			Модель сим. С2и			Модель сим. С _{2v}		
Форми	v	ИК	KP	v	ИК	KP	v	ИК	KP
q _{OH}	3639	55,3	110	3641	4,30	206	3641	90,5	158
q _{OH}	3637	58,9	96,5	3640	112	1,54	3640	12,2	43,7
Q, β _{OH}	1337	22,5	1,10	1333	139	0,02	1335	56,5	1,47
β, β _{OH}	1307	6,11	3,06	1303	37,7	1,02	1301	30,1	8,37
Q _{CO} , γ	1295	72,8	7,64	1294	76,6	9,72	1184	98,9	4,95
β_{OH}, Q_{CO}	1196	13,2	2,81	1201	0,06	0,93	1178	123	0.09
β_{OH}, Q_{CO}	1170	243	2,92	1181	62,8	4,92	1152	108	4,27
β	1138	135	2,25	1123	223	0,08	1134	138	0,84
β_{CO}	468	6,67	0.24	464	17,6	0,20	471	21,9	0,18
β_{CO}	325	11,7	0,80	326	3,31	0,26	325	4,18	1,40
ρ _{со} , χ	668	15,9	0,03	664	15,1	0,04	667	19,5	0,00
ρςο, χ	613	1,48	0,04	615	0.00	0,02	610	0,00	0,04
χон	350	181	1,79	333	0,00	5,38	322	0,00	1,24
χон	330	38,2	3,72	327	206	0,02	320	210	4,12

Интерпретация колебательных состояний метагидроксифенола

Набор фундаментальных колебаний моно- и дигидроксизамещенных бензола можно разделить на две части. Первая часть включает колебания бензольного остова, вторая – колебания фрагментов СОН. В таблицах 1–4 предложена интерпретация фундаментальных колебаний, в которых участвуют фрагменты СОН. Интерпретация колебаний бензольного остова (C_6H_5 и C_6H_4) моно- и дизамещенных бензола соответствует, представленной в литературе [4–6]. Интенсивные полосы в ИК и КР спектрах, интерпретированные как валентные колебания связей ОН, могут быть использованы при спектральной идентификации соединений, а по интенсивностям ряда полос в ИК спектрах можно идентифицировать конформационную модель. Для парадигидробензола (табл. 2) это полосы ~1360 см⁻¹, 1200 см⁻¹. Для ортодигидробензола (табл. 3) и метадигидрофенола (табл. 4) – четыре полосы в диапазоне 1370–1150 см⁻¹.

Заключение. Результаты моделирования конформационных моделей гидроксизамещенных фенола дают основание утверждать, что методы функционала плотности позволяют осуществлять предсказательные расчеты геометрической структуры и колебательных состояний шестичленных циклических соединений, содержащих гидроксильную группу.

Литература

1. Пулин, В. Ф. Исследование динамики молекулярных соединений различных классов / В. Ф. Пулин, М. Д. Элькин, В. И. Березин. – Саратов : Изд-во СГТУ, 2002. – 569 с.

2. Свердлов, Л. М. Колебательные спектры многоатомных молекул / Л. М. Свердлов, М. А. Ковнер, Е. П. Крайнов. – М. : Наука, 1970. – 560 с.

3. Gaussian 03. Revision A.7. Frisch M. J. [et al.]. – Pittsburgh : Gaussian. Inc., 2003.

4. Green, J. H. S. Vibrational spectra of disubstituted benzenes / J. H. S. Green // Spectrochim. Acta. – 1970. – 26A, № 7. – P. 1503–11533.

5. Green, J. H. S. Vibrational spectra of monosubstituted benzenes / J. H. S. Green // Spectrochim. Acta. -1970. - 26A, No 9. -P. 1925-1938.

6. Rao, P. R. Vibrational analysis of substituted phenols / P. R. Rao, G. R. Rao // Spectrochim. Acta. – 2002. – 58A, № 14. – P. 3039–3065.