К ВОПРОСУ О СОЗДАНИИ ГЕОДЕЗИЧЕСКИХ СЕТЕЙ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ НА ТЕРРИТОРИИ г. АСТРАХАНИ С ИСПОЛЬЗОВАНИЕМ СПУТНИКОВЫХ СИСТЕМ ОПРЕДЕЛЕНИЯ КООРДИНАТ

С. В. Устюгов, М. Ш. Капилевич

Рассматриваются вопросы создания геодезических сетей специального назначения в условиях плотной городской застройки и неэффективности применения классических методов геодезии.

Ключевые слова: государственная геодезическая сеть, государственная сеть специального назначения, базовая референциая станция, GPS-приемник, специальное программное обеспечение.

The article covers special geodetic networks, developed in the conditions of dense urban planning and dwells on ineffectiveness of conventional methods of geodesy in this situation.

Keywords: national geodetic network, special geodetic network, base reference station, GPS receiver, special software.

Основной задачей геодезических работ является определение координат местоположения точки, расположенной на поверхности Земли в соответствующей системе координат. Система координат — опорная система для определения положения точек в пространстве или на плоскостях и поверхностях относительно выбранных осей, плоскостей или поверхностей. Применяемые в настоящее время системы координат разнообразны — геодезическая, астрономическая, прямоугольная.

Для закрепления системы координат, выбранной на конкретной территории, применяются специальные закрепленные на местности знаки, которые называются геодезическими пунктами. Геодезические пункты входят в состав геодезических сетей, которые можно подразделить на:

- глобальные (общеземные), покрывающие весь земной шар;
- национальные (государственные), создаваемые в пределах территории каждой отдельной страны в единой системе координат и высот, принятой в данной стране;
- геодезические сети специального назначения, т. е. сети на локальных участках территории, используемые для решения различных задач в местной системе координат.

Геодезические сети специального назначения (далее – ГССН) – главная геодезическая основа для крупномасштабных (1:5000 и крупнее) съемок, а также для других работ, требующих соответствующей точности.

ГССН создаются в тех случаях, когда дальнейшее сгущение пунктов государственной геодезической сети экономически нецелесообразно или когда требуется особо высокая точность геодезической сети.

ГССН классифицируются на сети 1 и 2 разрядов и в зависимости от полевых условий могут создаваться методами триангуляции, трилатерации, полигонометрии или их сочетанием, с опорой на пункты государственной геодезической сети. Поскольку в соответствии с основным назначением ГССН, как правило, строится на застроенных и подлежащих застройке территориях, основным методом ее создания является полигонометрия. Данный метод считается классическим и до появления спутниковых методов определения местоположения объектов являлся основным и самым оптимальным. В таблице 1 приведены точностные характеристики, предъявляемые при проведении работ классическими методами.

Таблица 1 Точность взаимного положения пунктов городских геодезических сетей

Класс триангуляции, полигонометрии	Разряд триангуляции	разряо (класс) и городской полигонометрии	Относительная ошибка стороны (хода городской полигонометрии)	
(ГГС)	городов		базисной стороны сети	слабой стороны сети
1			1:400000	1:150000
2	Ι		1:300000	1:250000
3	II		1:200000	1:120000
4	III		1:200000	1:70000
		4 класс	1:25000	
		1	1:10000	
		2	1:5000	

Спутниковые методы определения местоположения объектов — это принципиально новые технические средства и программы, которые потребовали существенного пересмотра традиционных подходов к проблеме создания ГССН.

Концепция перехода топографо-геодезического производства на методы спутниковых координатных определений, разработанная с целью обеспечения наиболее рационального и эффективного практического определения координат и высот пунктов земной поверхности на всей территории страны, с точностями, требуемыми для решения, возможно, более широкого круга научно-технических и производственных задач, не раскрывает конкретных проблем создания и реконструкции городских геодезических сетей [1, с. 2].

Территория города — это территория с максимальной плотностью застройки, что является в настоящий момент основной причиной отхода в сторону от классических методов построения городских геодезических се-

тей специального назначения, основанных в первую очередь на необходимости проведения прямых визуальных наблюдений, что крайне затруднительно для городских условий.

Кроме того, спутниковые методы построения городских геодезических сетей являются и по точности (табл. 2), и по времени наиболее эффективными, а также позволяют использовать инновационный потенциал современных геоинформационных технологий.

Спутниковые сети

Таблица 2

Tun cemu	Точность определения координат, см	Относительная ошибка определения линий не грубее	Значения средних погрешностей взаимного положения пунктов, мм
Исходный пункт (ИП)	1–2	1:1000000	_
Каркасная сеть (КС)	1–2	1:500000	15
Спутниковая городская геодезическая сеть 1 класса (СГГС-1)	1–2	1:150000	20
Спутниковая городская геодезическая сеть 2 класса (СГГС-2)	1–2	1:150000	_

Создание спутниковой городской геодезической сети регламентируется такими нормативными документами, как:

- Указ Президента Российской Федерации от 17.05.2007 г. № 638 «Об использовании глобальной навигационной спутниковой системы ГЛОНАСС в интересах социально-экономического развития Российской Федерации»;
- Федеральный закон от 24 июля 2007 г. № 221-ФЗ «О государственном кадастре недвижимости»;
- Геодезические картографические инструкции, нормы и правила ГКИНП (ОНТА)-01-271-03 «Руководство по созданию и реконструкции городских геодезических сетей с использованием спутниковых систем ГЛОНАСС и GPS»;
- Инструкция по топографической съемке в масштабах 1:5000, 1:2000, 1:1000 и 1:500 (ГКИНП-02-033-83), утверждена ГУГК 05.10.79 г., введена в действие с 01.01.83 г. с поправками, утвержденными ГУГК 09.09.82 г. (приказ № 436п). (Сфера действия общеобязательная.)
- В г. Астрахани активные построения опорной геодезической сети классическими методами закончились к началу 90-х гг. Срок службы необновленной геодезической основы любой точности составляет всего лишь около 20 лет. Так, например, по данным Федеральной службы государственной регистрации, кадастра и геодезии, порядка 60 % пунктов государ-

ственной геодезической сети страны утрачены либо вышли из строя. В г. Астрахани уже имеющаяся геодезическая сеть требует полномасштабной реконструкции.

Современные спутниковые методики определения местоположения точек земной поверхности позволяют говорить о том, что пункты городской триангуляции (полигонометрии) могут быть заменены или дополнены пунктами спутниковой сети. В случае их утраты пункты спутниковой сети совмещаются с ближайшими к ним (по примыкающим ходам) пунктами полигонометрии. Таким образом, ранее созданная сеть городской триангуляции дополняется спутниковой городской геодезической сетью (далее – СГГС), что приведет к увеличению точности работ, проводимых на территории города. При этом переуравнивание сетей городской триангуляции прошлых лет исключается, т. к. исходными пунктами для переуравнивания старой сети служат пункты спутниковой сети, в т. ч. совмещенные с пунктами городской триангуляции [1, с. 11].

Оценка данной ситуации позволяет сделать вывод о возможности ее решения посредством создания спутниковых референцных станций как основы СГГС, а точнее региональных референцных станций г. Астрахани с последующим распространением на территорию всего региона.

Сеть референцных станций – совокупность постоянно действующих спутниковых референцных станций, установленных на местности по определенной схеме, относительное положение которых определено в единой системе координат, объединенные каналами коммуникаций для сбора и обработки спутниковых данных в едином центре, так чтобы обеспечивалось выполнение измерений и определение пространственного местоположения объектов на обширной площади с одинаковой точностью и в единой системе отсчета времени и пространства (рис. 1).

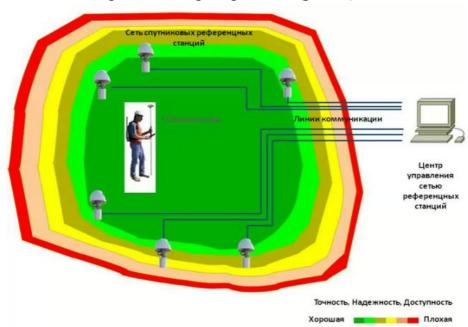


Рис. 1. Сеть референцных станций

На базе Астраханского инженерно-строительного института был апробирован учебно-исследовательский проект по созданию референцной станции и развитию геодезической сети специального назначения — опорной межевой сети.

Целью работы было создание референцной станции для последующего увеличения плотности опорной межевой сети путем создания и закрепления двух межевых знаков. Данный проект проводился в качестве эксперимента в ходе учебного процесса.

Рис. 2. Референцная стационарная база

Технологическая часть проекта начиналась с создания и закрепления спутникового GPS-приемника Sokkia (рис. 2), установленного на крыше одного из корпусов учебного заведения с дальнейшей перспективой его использования в качестве базовой станции. Другой GPS-приемник Sokkia устанавливался на пунктах городской полигонометрической сети (рис. 3).

Рис. 3. Места установки второго GPS-приемника

Координаты пунктов полигонометрии города известны в условной системе координат (рис. 4).

	Назв. пункта	Описание пункта	На восток	95% Ош.	На север
1	1254		9991432,648	0,000	9993202,031
2	3494		9991760,704	0,000	9993297,370
3	3845		9991573,153	0,000	9993344,614

Рис. 4. Координаты пунктов

При таком технологическом действии GPS-приемник, который поочередно устанавливался на пунктах полигонометрической сети с заранее известными координатами, образует вектор с первоначально установленным приемником GPS, который в дальнейшем будет использоваться как базовый. Для повышения точности получаемых результатов наблюдения проводились в течение 5 дней, при этом необходимым условием являлась одновременная работа как принимающего, так и передающего приемника. Векторы передачи данных приведены на рис. 5.

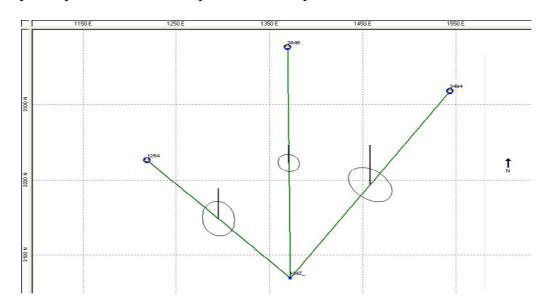


Рис. 5. Векторы передачи приращения координат на базовую станцию

После обработки полученных результатов в ПО «Spectrum Survey Version 3.3» были получены координаты принимающего GPS-приемника. Ввиду того, что в ходе проведения работ соблюдались необходимые и достаточные условия повышения точности определения координат, в дальнейшем такая станция признается как базовая, с условным названием «KMZ_». На рисунке 6 приведена итоговая таблица расчета приращений для получения координат базовой станции «KMZ ».

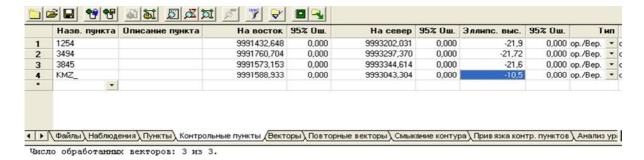


Рис. 6. Обработка и получение координат базовой станции

Далее было использовано другое техническое оборудование, а именно комплект спутниковой геодезической двухчастотной GPS-аппаратуры «Trimble-5700», которой были произведены контрольные измерения полученных координат базовой станции «КМZ». Результаты контрольного определения координат с использованием пункта ГГС «птр. База» представлены на рис. 7.

			Исходные	е данные	1	
	1. По	еречень докуме	нтов, использован	ных при подготовке межев	ого плана	
№ n/n	Наи	менование доку	мента	Реквизиты документа		
1	2			3		
1						
	2. Сведеня	ня о геодезичесь	кой основе, исполь	зованные при подготовке м	ежевого плана	
		Сис	тема координат <u>м</u>	естная (г.Астрахань)		
Ne n/n	геодезической сети		геодезической Коор		динаты, м	
24 1011			геодезической	X	Y	
1	2		3	44	5	
1	птр	База		9992554,56	999805,82	
	C-USUS		3. Сведения о сред	ствах измерений		
Me n/n	Наименован (инструмента,		Реквизиты сертификата прибора (ииструмента, аппаратуры)		Реквизиты свидетельства с поверке прибора (инструмента, аппаратуры	
1	2		3		4	
1	Комплект сі геодезической д GPS-аппаратуры заводской номе	двухчастотнои «Trimble-5700",	№ в государственном реестре средств измерений		Свидетельство о поверке № 022242, 022141,	
		C	ведения о хара	ктерных точках		
	Коордия	аты, м	Средняя			
.М:М: гочек по абрису	x	Y	квалратическая погрешность положения характерных точек границ (М _г)	Метод определения координат	Используемое программное обеспечение	
1	2	3	4	5	6	
KMZ_	9993043,30	9991588,93	0,02	Метод спутниковых геодезических измерений	Вычислено с использованием программного обеспечения Trimble Geomatics office лицензия.	

Рис. 7. Контрольные определения

К созданной базовой станции были подключены кабельные коммуникации, связавшие ее со стационарным ПК. Полученная референцная станция в последующем использовалась для передачи координат на создаваемые межевые знаки при развитии опорной межевой сети, а также для решения задач, связанных с практическим использованием в учебном процессе.

Без сомнений, данная базовая станция решает практические задачи, определения координат объектов для учебного процесса с небольшим радиусом действия порядка 10 км. В дальнейшем такая станция войдет в сеть стационарных, спутниковых референцных станций, объединенных каналами коммуникаций.

В перспективе выполнение определений координат для базовой станции возможно проводить методом точного позиционирования РРР, который не требует привязки к пунктам ГГС и не нуждается в дифференциальной коррекции. Кроме того, при использовании точных значений эфемерид и поправок часов спутника такой метод позволяет компенсировать основные погрешности абсолютных фазовых спутниковых измерений. Данная информация создается в виде отдельных файлов в центре сбора и обработки спутниковых данных и может быть получена через глобальную информационную сеть Интернет.

Настоящий исследовательский проект доказывает необходимость создания целого ряда постоянно действующих спутниковых референцных станций, установленных на местности так, чтобы обеспечивать выполнение измерений и определение пространственного местоположения объектов на обширной площади с одинаковой точностью и в единой системе отсчета времени и пространства.

Площадь г. Астрахани составляет порядка 50 км 2 , а плотность СГГС-1-1 пункт на 5–40 км 2 городской геодезической сети, плотность же СГГС-2 должна удовлетворять текущие потребности городского геодезического обоснования плотно застроенной территории 16 пунктов на 1 км 2 .

Согласно ГКИНП (ОНТА)-01-271-03 «Руководство по созданию и реконструкции городских геодезических сетей с использованием спутниковых систем ГЛОНАСС и GPS» в случае построения городской геодезической сети с использованием спутниковых систем ГЛОНАСС и GPS с точностью СГГС-1 на территории г. Астрахани условное количество референцных станций составит от 2 до 10.

При дальнейшей разработке проекта предлагаемая спутниковая геодезическая сеть позволит решить для обслуживаемой территории следующие задачи:

- создание единого координатно-временного пространства;
- оперативность принятия управленческих решений;
- решение не только топографо-геодезических и навигационных задач, но и административных задач управления территориями;

- управление всей сетью референцных станций одним оператором с одного компьютера;
- оперативное ведение кадастровых планов территории и дежурных планов городов;
 - оперативное выполнение и удешевление работ по межеванию земель.

Список литературы

- 1. Федеральный закон от 24 июля 2007 г. № 221-ФЗ «О государственном кадастре недвижимости».
- 2. Указ Президента Российской Федерации от 17.05.2007 № 638 «Об использовании глобальной навигационной спутниковой системы ГЛОНАСС в интересах социально-экономического развития Российской Федерации».
- 3. Геодезические картографические инструкции, нормы и правила ГКИНП (ОН-ТА) -01-271-03 «Руководство по созданию и реконструкции городских геодезических сетей с использованием спутниковых систем ГЛОНАСС и GPS».
- 4. Инструкция по топографической съемке в масштабах 1:5000, 1:2000, 1:1000 и 1:500 (ГКИНП-02-033-83). Утверждена ГУГК 05.10.79 г. Введена в действие с 01.01.83 г. с поправками, утвержденными ГУГК 09.09.82 г. (приказ № 436п) (сфера действия общеобязательная). М. : Недра, 1982.
- 5. Инструкция об охране геодезических пунктов (ГКИНП-ГНТА-07-011-97). Утверждена Роскартографией 25.07.97 г. и согласована с МОРФ 10.07.97 г. (сфера действия общеобязательная).